Distinct light-mediated pathways regulate the biosynthesis and exchange of isoprenoid precursors during Arabidopsis seedling development.

نویسندگان

  • Manuel Rodríguez-Concepción
  • Oriol Forés
  • Jaime F Martinez-García
  • Victor González
  • Michael A Phillips
  • Albert Ferrer
  • Albert Boronat
چکیده

Plants synthesize an astonishing diversity of isoprenoids, some of which play essential roles in photosynthesis, respiration, and the regulation of growth and development. Two independent pathways for the biosynthesis of isoprenoid precursors coexist within the plant cell: the cytosolic mevalonic acid (MVA) pathway and the plastidial methylerythritol phosphate (MEP) pathway. In at least some plants (including Arabidopsis), common precursors are exchanged between the cytosol and the plastid. However, little is known about the signals that coordinate their biosynthesis and exchange. To identify such signals, we arrested seedling development by specifically blocking the MVA pathway with mevinolin (MEV) or the MEP pathway with fosmidomycin (FSM) and searched for MEV-resistant Arabidopsis mutants that also could survive in the presence of FSM. Here, we show that one such mutant, rim1, is a new phyB allele (phyB-m1). Although the MEV-resistant phenotype of mutant seedlings is caused by the upregulation of MVA synthesis, its resistance to FSM most likely is the result of an enhanced intake of MVA-derived isoprenoid precursors by the plastid. The analysis of other light-hyposensitive mutants showed that distinct light perception and signal transduction pathways regulate these two differential mechanisms for resistance, providing evidence for a coordinated regulation of the activity of the MVA pathway and the crosstalk between cell compartments for isoprenoid biosynthesis during the first stages of seedling development.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Transposase-derived proteins FHY3/FAR1 interact with PHYTOCHROME-INTERACTING FACTOR1 to regulate chlorophyll biosynthesis by modulating HEMB1 during deetiolation in Arabidopsis.

Successful chlorophyll biosynthesis during initial light exposure is critical for plant survival and growth, as excess accumulation of chlorophyll precursors in darkness can cause photooxidative damage to cells. Therefore, efficient mechanisms have evolved to precisely regulate chlorophyll biosynthesis in plants. Here, we identify FAR-RED ELONGATED HYPOCOTYL3 (FHY3) and FAR-RED IMPAIRED RESPONS...

متن کامل

Comprehensive Assessment of Transcriptional Regulation Facilitates Metabolic Engineering of Isoprenoid Accumulation in Arabidopsis.

In plants, two spatially separated pathways provide the precursors for isoprenoid biosynthesis. We generated transgenic Arabidopsis (Arabidopsis thaliana) lines with modulated levels of expression of each individual gene involved in the cytosolic/peroxisomal mevalonate and plastidial methylerythritol phosphate pathways. By assessing the correlation of transgene expression levels with isoprenoid...

متن کامل

HY1 genetically interacts with GBF1 and regulates the activity of the Z-box containing promoters in light signaling pathways in Arabidopsis thaliana

Arabidopsis HY1/HO1, heme oxygenase enzyme, catalyses the oxygenation of heme to produce biliverdin, an essential step in the phytochrome-chromophore biosynthesis pathway. GBF1/ZBF2 is a G/Z-box binding bZIP protein that plays a dual but opposite regulatory roles in blue light-mediated seedling development and gene expression. Here, we show the genetic interactions of HY1 and GBF1 in seedling p...

متن کامل

DELLAs regulate chlorophyll and carotenoid biosynthesis to prevent photooxidative damage during seedling deetiolation in Arabidopsis.

In plants, light represents an important environmental signal that triggers the production of photosynthetically active chloroplasts. This developmental switch is critical for plant survival because chlorophyll precursors that accumulate in darkness can be extremely destructive when illuminated. Thus, plants have evolved mechanisms to adaptively control plastid development during the transition...

متن کامل

Modeling of Dolichol Mass Spectra Isotopic Envelopes as a Tool to Monitor Isoprenoid Biosynthesis.

The cooperation of the mevalonate (MVA) and methylerythritol phosphate (MEP) pathways, operating in parallel in plants to generate isoprenoid precursors, has been studied extensively. Elucidation of the isoprenoid metabolic pathways is indispensable for the rational design of plant and microbial systems for the production of industrially valuable terpenoids. Here, we describe a new method, base...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Plant cell

دوره 16 1  شماره 

صفحات  -

تاریخ انتشار 2004